
STEM Challenge
Construct a model that can go underwater

Thanks to Ashling C & Alan C, Askea BNS, Carlow for contributing this STEM Challenge idea

Suggested LEGO Spike build: Underwater Quest

Remember to use the Design & Make Process!

Angles How many degrees in a full rotation of the arm?
What angle types and sizes can be seen in the model?

Computational
Thinking

What smaller tasks do we need to complete to build
an underwater LEGO model?
What are some common features that all underwater
vehicles have? Can we identify these patterns and
apply them to our LEGO model?

Measures What is the area of the base of the model?
How long can you make the arm that supports the submarine?

Engineering How could I enclose the submarine?
How do I keep it water tight?

Problem
Posing

Why does it need to go underwater?
How would I make it suitable for two people?
Could this be useful in my locality?
Can you think of any other problems?

Exploring Making

Planning Evaluating

STEM Challenge
Construct an accessible carousel

Thanks to Martin McE, Siobhán K, Colette C & Kate C from Scoil Mhuire gan Smál GNS, Carlow for contributing this STEM Challenge idea

Suggested LEGO Spike build: Classic Carousel

Remember to use the Design & Make Process!

Lines
& Angles

How many degrees will you turn in a quarter (1/4),
half (1/2) and full rotation?

Computational
Thinking

What lessons can you take away from this problem and
apply to other problems?
Does the result (of your LEGO build and/or code) match
what you expected?

Measures
What is the area of the base of the model?
In a class of 30 students, how many turns can each
person get in an hour?

Engineering
Could you add a safety system using a sensor that would
enable it to stop automatically when a student is close by?
Could you add music that will play when the carousel
is in motion?

Problem
Posing

Can you adapt your carousel so that anyone with a
mobility aid could use it safely?
Can you think of any other modifications that could be
made? Why are they important to make?

Exploring Making

Planning Evaluating

STEM Challenge
Construct an accessible swing

Thanks to Lorraine M, Mary K & Marian M, Askea GNS, Carlow for contributing this STEM Challenge idea

Suggested LEGO Spike build: Underwater Quest

Remember to use the Design & Make Process!

Lines
& Angles

Draw a diagram of your modified swing.
Make sure to measure it and add labels!

Computational
Thinking

What are the different parts we need to construct a swing?
Are there patterns or designs in real swings that we
can identify and apply to our LEGO swing?
Can we create an ordered set of actions that we can
follow to ensure that our swing works correctly?

Visual Arts
& SPHE

Design a poster to advertise your inclusive swing.
Devise a system so that everyone gets an equal amount
of time on the swing

Engineering How could you automatically lower the swing and return
 it to its original height?
Will we need to modify the speed? Why?

Problem
Posing

How could you modify the swing to make it inclusive
for students with mobility aids?
Could I add a second swing? Why/why not?
Could this be useful in my locality?

Exploring Making

Planning Evaluating

STEM Challenge
Construct a space car

Thanks to Ashling C & Alan C, Askea BNS, Carlow for contributing this STEM Challenge idea

Suggested LEGO Spike build: Cave Car

Remember to use the Design & Make Process!

Shapes
& Space

How many different 2D shapes you can you find on your car?
How far can your car travel?

Computational
Thinking

What smaller tasks do we need to complete to build
an underwater LEGO model?
What are some common features that all underwater
vehicles have? Can we identify these patterns and
apply them to our LEGO model?

Measures How long is your car?
How wide is your car?

Engineering Where could you park your space car?
Could you build something to keep your space car safe?

Problem
Posing

Imagine your space car needs to navigate through an alien
landscape with unpredictable surfaces and gravity changes.
How might you design it to handle these challenges?
What unique obstacles it come across (steep slopes/low-gravity)?
How could your space car adapt to these conditions and ensure
successful exploration?

Exploring Making

Planning Evaluating

STEM Challenge
Invent a hovercraft

Thanks to Sean K from Bishop Foley BNS, Carlow for contributing this STEM Challenge idea

Suggested LEGO Spike build: Boat Trip

Remember to use the Design & Make Process!

Lines
& Angles

Draw a map with the route the hovercraft will take.
Can you modify this to turn it into an obstacle course?

Computational
Thinking

If your hovercraft encountered an unexpected obstacle,
how could you program it to navigate around the obstacle?
How could you modify it to carry a camera or sensor ?
How could you modify your hovercraft's program to make it
more efficient or faster at completing the obstacle course?
What changes would you need to make to the code, and how
would these changes affect the performance of the hovercraft?

Measures
Measure the distance travelled by the hovercraft.
Measure the longest and the shortest route taken by
the hovercraft to reach its destination.

Engineering How could I enclose the submarine?
How do I keep it water tight?

Problem
Posing

How can you move between water/land without losing control?
What happens if your hovercraft encounters an obstacle?
What challenges did you face while building your hovercraft?
How did you overcome these challenges?

Exploring Making

Planning Evaluating

STEM Challenge
Construct a submarine clock that stops every half hour

Thanks to Ailbhe O’S, Megan C, Maria B & Claire S, St. Catherine’s Senior GNS, Dublin for contributing this STEM Challenge idea

Suggested LEGO Spike build: Underwater Quest

Remember to use the Design & Make Process!

Angles How many degrees in a full rotation of the arm?
What angle types and sizes can be seen in the model?

Computational
Thinking

Could you design a waiting platform for those waiting
to get on?
What code do you need to add sound to signal the half
an hour is up?

Measures
Explore circle rotations, e.g. 180 degree turn of the
spinning submarine.
Design a clock big enough to fit in the background.

Engineering How could I enclose the submarine?
How do I keep it water tight?

Problem
Posing

Every half hour, passengers swap.
How can you get the submarine to stop every half
How will you notify the passengers that it has stopped?

Exploring Making

Planning Evaluating

STEM Challenge
Construct a robot that can help with simple school tasks

Thanks to Emma N & Fiona F, St. Finbarr’s BNS, Dublin for contributing this STEM Challenge idea

Suggested LEGO Spike build: Little Big Helper

Remember to use the Design & Make Process!

Computational
Thinking

What functions of the robot can you identify, for
example; turning, stopping, moving forward, reversing etc.
How will the robot identify items?
If your robot is organising classroom materials, how can
you decompose this task into actions like identifying items,
picking them up, and delivering them to the correct location?

Weight

What is the maximum weight the robot can carry?
What are some common objects that are heavy?
What are some that are light?
How does weight affect the movement of an object?
Can heavy objects move as quickly as light object?

English &
Geography

Write a procedural text to tell your robot to do something.
Draw a map for the Big Little Helper to get around the school.

Engineering How can we create a robot is suitable to work both
indoors and outdoors?

Problem
Posing

How can we use our knowledge of weight to design and build
a LEGO robot that can support a certain amount of weight?
How can we design the robot to safely navigate the
school's hallways and classrooms and avoid obstacles?

Exploring Making

Planning Evaluating

STEM Challenge
Design and build a pirate ship

Thanks to Sarah J, Sarah S, Nora A & Germaine F from St. Mary’Help of Christian’s, Dublin for contributing this STEM Challenge idea

Suggested LEGO Spike build: Swamp Boat

Remember to use the Design & Make Process!

Coordinates

Imagine your boat is a pirate ship and you are searching
for buried treasure..
Draw a map of the area that the boat will sail on.
Include co-ordinates of the important locations on the map.
Don't forget to include the location of the buried treasure!

Computational
Thinking

Design a program that enables your robot to recognise
and "hoist" different pirate flags.
Design a program that instructs the robot to navigate to
the correct spot on the map, pick up the treasure, and
return to their ship.

Problem
Posing

Can you design a pulley system to load treasure onto
the boat?
Can you motorise the boat?
Design a boat to travel on all terrains - land and water.

PE:
obstacle course
& orienteering

Divide students into "ship crews" and set up an
obstacle course that mimics the challenges a pirate ship
might face at sea.
Activities could include: crawling under "rigging" (ropes),
balancing on planks, and jumping over "waves" (hurdles).

Engineering Add features to your boat to turn it into a pirate ship
e.g. plank, mast, flag etc.

Exploring Making

Planning Evaluating

STEM Challenge
Design a modern day vehicle to send back to WWI

Thanks to Michelle B, Eoin F, Gary O’M & Aoife M from Our Lady of Victories BNS, Dublin for contributing this STEM Challenge idea

Suggested LEGO Spike build: Arctic Ride

Remember to use the Design & Make Process!

Geography
Mapping - Define countries of Europe at the time
Focus on the terrain; how it changed at different
stages of the war etc.

History Research the vehicles present at the time.
Identify functions of vehicles that might have been used.

English Novel Study: War Horse

Problem
Posing

Design a vehicle for a variety of purpose, for example:
rescue, transport, fighting, medical aid

Computational
Thinking

Create a program that uses sensors to detect and relay
information about "enemy troops" (colored objects) or
"hazardous zones" (marked areas).

Engineering

How could you create a vehicle suitable for the
conditions presented?
What does the vehicle need to provide safety for all
its passengers?
How is the vehicle going to be fuelled?
What elements of the robot are going to provide back
up if there was to be damage during war?

Exploring Making

Planning Evaluating

STEM Challenge
Construct an eco-friendly cabin

Suggested LEGO Spike build: Treehouse Camp

Remember to use the Design & Make Process!

Shape
& Space

What 2D or 3D shapes can you recognise in your cabin?
Can you identify the number of vertices on your cabin?

Computational
Thinking

Program your robot to simulate a rainwater collection
system. Your robot must open and close "valves"
 based on weather conditions and the cabin's water needs.
Create a fan to keep your friends cool - can you adjust
the speed and direction of the fan?

Measures Using base plates, calculate the area and perimeter of
the land your cabin is located on.

Engineering
How could you create a ladder for the cabin that is
safe and easy to climb?
Could you create a pulley system for lifting and
transporting supplies and materials up to the cabin?

Problem
Posing

You‛d like to invite large group of friends to see your
new cabin. Will they fit? What will you show them?
Could this be useful in my locality?
Can you think of any other problems?

Exploring Making

Planning Evaluating

STEM Challenge
Invent a time-travelling machine

Suggested LEGO Spike build: Ferris Wheel

Remember to use the Design & Make Process!

Line
& Angles

Draw a map to chart the journey of your time-travelling
machine (must include right angles/perpendicular lines etc)

Computational
Thinking

Can you write a program to control the indicators and
signal left and right?
Program your robot to interact with historical figures
or events. Your program must allow your robot to engage
in conversations or tasks relevant to the specific era it visits.

Measures Measure the distance travelled by your machine on its
adventures.

Engineering
How could you include sensors to collect specimens or
to allow it to detect obstacles and avoid collisions?
Could you add features to your time travelling machine
such as headlights, tail-lights and indicators?

Problem
Posing

What problems might you encounter on your adventures?
How would you solve them?
What might you discover if you were to travel back in
time in your local town or village?

Exploring Making

Planning Evaluating

STEM Challenge
Create/Invent a ________________

Suggested LEGO Spike build: ____________________

Remember to use the Design & Make Process!

__

__

__

__

Computational
Thinking

Engineering

Problem
Posing

__
__
__
__

__
__
__
__

__
__
__
__

Exploring Making

Planning Evaluating

Question Prompts
Making and understanding computational objects

1. What similarities or patterns do we notice between
the problems or objects?
For example, how many objects/colours are there?
2. How can we use the details to identify parts of this
problem, robot, or object?
3. How can we describe the patterns?
4. How could we use the pattern to make predictions or draw conclusions?

Pattern Recognition

1. How can we simplify this problem/task?
2. What information is most important for solving this?
3. What information can we ignore in solving this?
4. How can we represent the important information?
5. What lessons can we take away from this
problem and apply to other problems?

Abstraction

Abstraction
1. How can we create a clear, step-by-step set of instructions for our robot to follow?
2. Can we make our robot do the same task in fewer steps?
3. What if we want our robot to do different things based on certain conditions.
 For example, if it bumps into something, what happens then?
4. Can we make our robot repeat certain actions a specific number of times?
 For example, spinning in a circle or moving forward and backward?

Algorithmic Thinking

1. Does the result match what we expected?
2. How can we tell whether or not our plan, model, or solution
 worked?
3. How can we modify our approach to address the problem?
4. How do we know that we have fixed the error?

Debugging

1. What details can be noticed in this problem or object?
2. What parts are familiar/unfamiliar?
3. Can we break down the parts further into smaller parts?
4. How can we use the details to identify parts of this
problem or object?
5. What are the different ways we could break down this problem, code or object?
6. How might breaking down this problem be helpful for solving or understanding it?

Decomposition

Question Prompts
Making and understanding computational objects

1. What similarities or patterns do we notice between
the problems or objects?
For example, how many objects/colours are there?
2. How can we use the details to identify parts of this
problem, robot, or object?
3. How can we describe the patterns?
4. How could we use the pattern to make predictions or draw conclusions?

Pattern Recognition

1. How can we simplify this problem/task?
2. What information is most important for solving this?
3. What information can we ignore in solving this?
4. How can we represent the important information?
5. What lessons can we take away from this
problem and apply to other problems?

Abstraction

Abstraction
1. How can we create a clear, step-by-step set of instructions for our robot to follow?
2. Can we make our robot do the same task in fewer steps?
3. What if we want our robot to do different things based on certain conditions.
 For example, if it bumps into something, what happens then?
4. Can we make our robot repeat certain actions a specific number of times?
 For example, spinning in a circle or moving forward and backward?

Algorithmic Thinking

1. Does the result match what we expected?
2. How can we tell whether or not our plan, model, or solution
 worked?
3. How can we modify our approach to address the problem?
4. How do we know that we have fixed the error?

Debugging

1. What details can be noticed in this problem or object?
2. What parts are familiar/unfamiliar?
3. Can we break down the parts further into smaller parts?
4. How can we use the details to identify parts of this
problem or object?
5. What are the different ways we could break down this problem, code or object?
6. How might breaking down this problem be helpful for solving or understanding it?

Decomposition

Question Prompts
Making and understanding computational objects

1. What similarities or patterns do we notice between
the problems or objects?
For example, how many objects/colours are there?
2. How can we use the details to identify parts of this
problem, robot, or object?
3. How can we describe the patterns?
4. How could we use the pattern to make predictions or draw conclusions?

Pattern Recognition

1. How can we simplify this problem/task?
2. What information is most important for solving this?
3. What information can we ignore in solving this?
4. How can we represent the important information?
5. What lessons can we take away from this
problem and apply to other problems?

Abstraction

Abstraction
1. How can we create a clear, step-by-step set of instructions for our robot to follow?
2. Can we make our robot do the same task in fewer steps?
3. What if we want our robot to do different things based on certain conditions.
 For example, if it bumps into something, what happens then?
4. Can we make our robot repeat certain actions a specific number of times?
 For example, spinning in a circle or moving forward and backward?

Algorithmic Thinking

1. Does the result match what we expected?
2. How can we tell whether or not our plan, model, or solution
 worked?
3. How can we modify our approach to address the problem?
4. How do we know that we have fixed the error?

Debugging

1. What details can be noticed in this problem or object?
2. What parts are familiar/unfamiliar?
3. Can we break down the parts further into smaller parts?
4. How can we use the details to identify parts of this
problem or object?
5. What are the different ways we could break down this problem, code or object?
6. How might breaking down this problem be helpful for solving or understanding it?

Decomposition

Question Prompts
Making and understanding computational objects

1. What similarities or patterns do we notice between
the problems or objects?
For example, how many objects/colours are there?
2. How can we use the details to identify parts of this
problem, robot, or object?
3. How can we describe the patterns?
4. How could we use the pattern to make predictions or draw conclusions?

Pattern Recognition

1. How can we simplify this problem/task?
2. What information is most important for solving this?
3. What information can we ignore in solving this?
4. How can we represent the important information?
5. What lessons can we take away from this
problem and apply to other problems?

Abstraction

Abstraction
1. How can we create a clear, step-by-step set of instructions for our robot to follow?
2. Can we make our robot do the same task in fewer steps?
3. What if we want our robot to do different things based on certain conditions.
 For example, if it bumps into something, what happens then?
4. Can we make our robot repeat certain actions a specific number of times?
 For example, spinning in a circle or moving forward and backward?

Algorithmic Thinking

1. Does the result match what we expected?
2. How can we tell whether or not our plan, model, or solution
 worked?
3. How can we modify our approach to address the problem?
4. How do we know that we have fixed the error?

Debugging

1. What details can be noticed in this problem or object?
2. What parts are familiar/unfamiliar?
3. Can we break down the parts further into smaller parts?
4. How can we use the details to identify parts of this
problem or object?
5. What are the different ways we could break down this problem, code or object?
6. How might breaking down this problem be helpful for solving or understanding it?

Decomposition

Question Prompts
Making and understanding computational objects

1. What similarities or patterns do we notice between
the problems or objects?
For example, how many objects/colours are there?
2. How can we use the details to identify parts of this
problem, robot, or object?
3. How can we describe the patterns?
4. How could we use the pattern to make predictions or draw conclusions?

Pattern Recognition

1. How can we simplify this problem/task?
2. What information is most important for solving this?
3. What information can we ignore in solving this?
4. How can we represent the important information?
5. What lessons can we take away from this
problem and apply to other problems?

Abstraction

Abstraction
1. How can we create a clear, step-by-step set of instructions for our robot to follow?
2. Can we make our robot do the same task in fewer steps?
3. What if we want our robot to do different things based on certain conditions.
 For example, if it bumps into something, what happens then?
4. Can we make our robot repeat certain actions a specific number of times?
 For example, spinning in a circle or moving forward and backward?

Algorithmic Thinking

1. Does the result match what we expected?
2. How can we tell whether or not our plan, model, or solution
 worked?
3. How can we modify our approach to address the problem?
4. How do we know that we have fixed the error?

Debugging

1. What details can be noticed in this problem or object?
2. What parts are familiar/unfamiliar?
3. Can we break down the parts further into smaller parts?
4. How can we use the details to identify parts of this
problem or object?
5. What are the different ways we could break down this problem, code or object?
6. How might breaking down this problem be helpful for solving or understanding it?

Decomposition

Question Prompts
Making and understanding computational objects

1. What similarities or patterns do we notice between
the problems or objects?
For example, how many objects/colours are there?
2. How can we use the details to identify parts of this
problem, robot, or object?
3. How can we describe the patterns?
4. How could we use the pattern to make predictions or draw conclusions?

Pattern Recognition

1. How can we simplify this problem/task?
2. What information is most important for solving this?
3. What information can we ignore in solving this?
4. How can we represent the important information?
5. What lessons can we take away from this
problem and apply to other problems?

Abstraction

Abstraction
1. How can we create a clear, step-by-step set of instructions for our robot to follow?
2. Can we make our robot do the same task in fewer steps?
3. What if we want our robot to do different things based on certain conditions.
 For example, if it bumps into something, what happens then?
4. Can we make our robot repeat certain actions a specific number of times?
 For example, spinning in a circle or moving forward and backward?

Algorithmic Thinking

1. Does the result match what we expected?
2. How can we tell whether or not our plan, model, or solution
 worked?
3. How can we modify our approach to address the problem?
4. How do we know that we have fixed the error?

Debugging

1. What details can be noticed in this problem or object?
2. What parts are familiar/unfamiliar?
3. Can we break down the parts further into smaller parts?
4. How can we use the details to identify parts of this
problem or object?
5. What are the different ways we could break down this problem, code or object?
6. How might breaking down this problem be helpful for solving or understanding it?

Decomposition

Question Prompts
Making and understanding computational objects

1. What similarities or patterns do we notice between
the problems or objects?
For example, how many objects/colours are there?
2. How can we use the details to identify parts of this
problem, robot, or object?
3. How can we describe the patterns?
4. How could we use the pattern to make predictions or draw conclusions?

Pattern Recognition

1. How can we simplify this problem/task?
2. What information is most important for solving this?
3. What information can we ignore in solving this?
4. How can we represent the important information?
5. What lessons can we take away from this
problem and apply to other problems?

Abstraction

Abstraction
1. How can we create a clear, step-by-step set of instructions for our robot to follow?
2. Can we make our robot do the same task in fewer steps?
3. What if we want our robot to do different things based on certain conditions.
 For example, if it bumps into something, what happens then?
4. Can we make our robot repeat certain actions a specific number of times?
 For example, spinning in a circle or moving forward and backward?

Algorithmic Thinking

1. Does the result match what we expected?
2. How can we tell whether or not our plan, model, or solution
 worked?
3. How can we modify our approach to address the problem?
4. How do we know that we have fixed the error?

Debugging

1. What details can be noticed in this problem or object?
2. What parts are familiar/unfamiliar?
3. Can we break down the parts further into smaller parts?
4. How can we use the details to identify parts of this
problem or object?
5. What are the different ways we could break down this problem, code or object?
6. How might breaking down this problem be helpful for solving or understanding it?

Decomposition

Question Prompts
Making and understanding computational objects

1. What similarities or patterns do we notice between
the problems or objects?
For example, how many objects/colours are there?
2. How can we use the details to identify parts of this
problem, robot, or object?
3. How can we describe the patterns?
4. How could we use the pattern to make predictions or draw conclusions?

Pattern Recognition

1. How can we simplify this problem/task?
2. What information is most important for solving this?
3. What information can we ignore in solving this?
4. How can we represent the important information?
5. What lessons can we take away from this
problem and apply to other problems?

Abstraction

Abstraction
1. How can we create a clear, step-by-step set of instructions for our robot to follow?
2. Can we make our robot do the same task in fewer steps?
3. What if we want our robot to do different things based on certain conditions.
 For example, if it bumps into something, what happens then?
4. Can we make our robot repeat certain actions a specific number of times?
 For example, spinning in a circle or moving forward and backward?

Algorithmic Thinking

1. Does the result match what we expected?
2. How can we tell whether or not our plan, model, or solution
 worked?
3. How can we modify our approach to address the problem?
4. How do we know that we have fixed the error?

Debugging

1. What details can be noticed in this problem or object?
2. What parts are familiar/unfamiliar?
3. Can we break down the parts further into smaller parts?
4. How can we use the details to identify parts of this
problem or object?
5. What are the different ways we could break down this problem, code or object?
6. How might breaking down this problem be helpful for solving or understanding it?

Decomposition

Question Prompts
Making and understanding computational objects

1. What similarities or patterns do we notice between
the problems or objects?
For example, how many objects/colours are there?
2. How can we use the details to identify parts of this
problem, robot, or object?
3. How can we describe the patterns?
4. How could we use the pattern to make predictions or draw conclusions?

Pattern Recognition

1. How can we simplify this problem/task?
2. What information is most important for solving this?
3. What information can we ignore in solving this?
4. How can we represent the important information?
5. What lessons can we take away from this
problem and apply to other problems?

Abstraction

Abstraction
1. How can we create a clear, step-by-step set of instructions for our robot to follow?
2. Can we make our robot do the same task in fewer steps?
3. What if we want our robot to do different things based on certain conditions.
 For example, if it bumps into something, what happens then?
4. Can we make our robot repeat certain actions a specific number of times?
 For example, spinning in a circle or moving forward and backward?

Algorithmic Thinking

1. Does the result match what we expected?
2. How can we tell whether or not our plan, model, or solution
 worked?
3. How can we modify our approach to address the problem?
4. How do we know that we have fixed the error?

Debugging

1. What details can be noticed in this problem or object?
2. What parts are familiar/unfamiliar?
3. Can we break down the parts further into smaller parts?
4. How can we use the details to identify parts of this
problem or object?
5. What are the different ways we could break down this problem, code or object?
6. How might breaking down this problem be helpful for solving or understanding it?

Decomposition

Question Prompts
Making and understanding computational objects

1. What similarities or patterns do we notice between
the problems or objects?
For example, how many objects/colours are there?
2. How can we use the details to identify parts of this
problem, robot, or object?
3. How can we describe the patterns?
4. How could we use the pattern to make predictions or draw conclusions?

Pattern Recognition

1. How can we simplify this problem/task?
2. What information is most important for solving this?
3. What information can we ignore in solving this?
4. How can we represent the important information?
5. What lessons can we take away from this
problem and apply to other problems?

Abstraction

Abstraction
1. How can we create a clear, step-by-step set of instructions for our robot to follow?
2. Can we make our robot do the same task in fewer steps?
3. What if we want our robot to do different things based on certain conditions.
 For example, if it bumps into something, what happens then?
4. Can we make our robot repeat certain actions a specific number of times?
 For example, spinning in a circle or moving forward and backward?

Algorithmic Thinking

1. Does the result match what we expected?
2. How can we tell whether or not our plan, model, or solution
 worked?
3. How can we modify our approach to address the problem?
4. How do we know that we have fixed the error?

Debugging

1. What details can be noticed in this problem or object?
2. What parts are familiar/unfamiliar?
3. Can we break down the parts further into smaller parts?
4. How can we use the details to identify parts of this
problem or object?
5. What are the different ways we could break down this problem, code or object?
6. How might breaking down this problem be helpful for solving or understanding it?

Decomposition

Question Prompts
Making and understanding computational objects

1. What similarities or patterns do we notice between
the problems or objects?
For example, how many objects/colours are there?
2. How can we use the details to identify parts of this
problem, robot, or object?
3. How can we describe the patterns?
4. How could we use the pattern to make predictions or draw conclusions?

Pattern Recognition

1. How can we simplify this problem/task?
2. What information is most important for solving this?
3. What information can we ignore in solving this?
4. How can we represent the important information?
5. What lessons can we take away from this
problem and apply to other problems?

Abstraction

Abstraction
1. How can we create a clear, step-by-step set of instructions for our robot to follow?
2. Can we make our robot do the same task in fewer steps?
3. What if we want our robot to do different things based on certain conditions.
 For example, if it bumps into something, what happens then?
4. Can we make our robot repeat certain actions a specific number of times?
 For example, spinning in a circle or moving forward and backward?

Algorithmic Thinking

1. Does the result match what we expected?
2. How can we tell whether or not our plan, model, or solution
 worked?
3. How can we modify our approach to address the problem?
4. How do we know that we have fixed the error?

Debugging

1. What details can be noticed in this problem or object?
2. What parts are familiar/unfamiliar?
3. Can we break down the parts further into smaller parts?
4. How can we use the details to identify parts of this
problem or object?
5. What are the different ways we could break down this problem, code or object?
6. How might breaking down this problem be helpful for solving or understanding it?

Decomposition

Question Prompts
Making and understanding computational objects

1. What similarities or patterns do we notice between
the problems or objects?
For example, how many objects/colours are there?
2. How can we use the details to identify parts of this
problem, robot, or object?
3. How can we describe the patterns?
4. How could we use the pattern to make predictions or draw conclusions?

Pattern Recognition

1. How can we simplify this problem/task?
2. What information is most important for solving this?
3. What information can we ignore in solving this?
4. How can we represent the important information?
5. What lessons can we take away from this
problem and apply to other problems?

Abstraction

Abstraction
1. How can we create a clear, step-by-step set of instructions for our robot to follow?
2. Can we make our robot do the same task in fewer steps?
3. What if we want our robot to do different things based on certain conditions.
 For example, if it bumps into something, what happens then?
4. Can we make our robot repeat certain actions a specific number of times?
 For example, spinning in a circle or moving forward and backward?

Algorithmic Thinking

1. Does the result match what we expected?
2. How can we tell whether or not our plan, model, or solution
 worked?
3. How can we modify our approach to address the problem?
4. How do we know that we have fixed the error?

Debugging

1. What details can be noticed in this problem or object?
2. What parts are familiar/unfamiliar?
3. Can we break down the parts further into smaller parts?
4. How can we use the details to identify parts of this
problem or object?
5. What are the different ways we could break down this problem, code or object?
6. How might breaking down this problem be helpful for solving or understanding it?

Decomposition

